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ABSTRACT

Sub-Nyquist systems capture the signal information in a different
fashion than uniform high-rate samples. Consequently, digital pro-
cessing, which is the prime reason for leaving the analog domain,
becomes challenging. We propose a digital algorithm that trans-
lates samples obtained by the modulated wideband converter, a re-
cent sub-Nyquist system, to the standard format of existing software
packages. Our algorithm works in baseband, that is without the need
to interpolate the samples to the Nyquist grid. Related methods such
as nonuniform sampling or the random demodulator are shown to
lack the baseband processing option.

Index Terms— Analog to digital conversion, balanced quadri-
correlator, compressed sensing, digital signal processing, modulated
wideband converter.

1. INTRODUCTION

Analog to digital conversion (ADC) lies at the heart of modern sig-
nal processing, isolating the delicate interaction with the continuous
world, so that sophisticated algorithms can be developed in a flexible
software environment. In today’s technology, analog signals appear
around carrier frequencies which are over tens of GHz, for which
sampling according to the highest possible frequency exceeds by far
the capabilities of commercial ADC devices. When the spectral sup-
port is apriori known, carrier demodulation provides the information
of interest at a low rate.

In this paper, we focus on sub-Nyquist systems which do not
assume the carrier locations [1–3], and more specifically on the abil-
ity to perform digital signal processing (DSP) with these systems –
the prime reason for shifting to the digital domain. The body of this
work investigates the modulated wideband converter (MWC) sys-
tem [1] in that DSP aspect. After describing the system in Section 2,
we define the term baseband processing and elaborate on the digi-
tal input type that standard DSP packages are designed to deal with.
As we show, the MWC generates outputs that are incompatible with
this format. In Section 3, we present a digital algorithm that trans-
lates the MWC outputs to the desired standard. In turn, any existing
DSP algorithm of interest can smoothly interface with the MWC.
Our method consists of three stages: refining the frequency support
estimate, isolating the transmissions, and finally a digital carriers re-
covery stage. The last step utilizes the balanced quadricorrelator, a
known and reliable frequency detector which is suitable for many
data transmission techniques, both analog and digital [4].

Combining the proposed algorithm with the MWC leads to a
powerful sub-Nyquist system, which is capable of sampling and pro-
cessing, both at a low rate, of signals with unknown spectral support.
In Section 4, we demonstrate the proposed algorithm and its accu-
racy in the presence of noise. The software implementation is avail-

able online at [5]. Section 5 addresses related sub-Nyquist strategies,
such as periodic nonuniform sampling [2] and the random demod-
ulator [3], which are both shown to lack the capability of baseband
processing at sub-Nyquist rates.

2. THE MODULATED WIDEBAND CONVERTER

2.1. System description

The MWC system treats analog signals x(t), referred to as multi-
band, whose Fourier transform X(f) is supported on no more than
N frequency intervals (bands), each with width no greater than B.
The band locations are unknown.

In order to reduce the sampling rate below Nyquist, the MWC
utilizes an analog front-end with m channels, as depicted in Fig. 1.
In the ith channel, the input signal x(t) is multiplied by a periodic
waveform pi(t), lowpass filtered, and then sampled every T seconds,
resulting in the sequence yi[n]. In the basic configuration, we choose
m ≥ 4N , filter cutoff 1/2T , rate 1/T = B, and T -periodic wave-
forms pi(t). An example of sign alternating periodic waveforms was
studied in [1]. The system samples at rate m/T ≥ 4NB, where the
information rate NB is assumed to be significantly smaller than the
Nyquist rate fNYQ of x(t). This basic configuration suffices for our
purposes; other configurations with practical advantages are detailed
in [1].

In the digital domain, the sample sequences y1[n], . . . , ym[n]
are processed by a continuous-to-finite (CTF) block. The CTF de-
termines the support of X(f) at resolution B, meaning an index set
S, such that l ∈ S indicates the presence of signal energy in the
length B spectrum slice, centered around lB. For example: in the
illustration of Fig. 2, S = {±1,±2,±3,±4}. The support esti-
mate S is then used to (pseudo-)invert a certain matrix CS , which
depends solely on the choice of periodic waveforms pi(t) and on
the set S [1]. Finally, the sample sequences yi[n] are translated,

via the linear mapping C†S , to another set of lowrate sequences
z−L[n], . . . , zL[n], with L being the smallest integer satisfying
M = 2L + 1 ≥ fNYQ/B. The rate B complex-valued sequence

zl[n] =
(
x(t)e−j2πlBt

)
� h(t)

∣∣
t= n

B
, −L ≤ l ≤ L, (1)

with � denoting convolution, contains the information about the lth
spectrum slice of x(t); all together, the sequences zl[n] determine
x(t).

2.2. Baseband processing

Shifting from analog to digital is motivated by storage on reliable
digital media, and more importantly by the ability to process the
data in a flexible software environment. By sub-Nyquist baseband
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Fig. 1: The modulated wideband converter samples analog signals according to their information rate. The digital processing of [1]
generates the lowrate sequences zl[n], from which point the present contribution starts.

processing we mean the ability to extract the information bits from
each band of interest, directly from the samples, namely without per-
forming any kind of interpolation to the Nyquist grid. Baseband
processing at the low rate is perhaps the most practical property of
sub-Nyquist systems to consider, since the theoretical interest in per-
fect reconstruction of the original high-rate analog x(t) is often less
useful. To achieve this functionality with standard DSP packages,
we need

• a sequence s[n], preferably at a low rate, which contains the
whole spectral contents of a single band of interest, and

• a fairly accurate estimate of the carrier frequency fi.

The term carrier frequency usually refers to the conventional quadra-
ture representation of communication signals [4]

s(t) = I(t) cos(2πfct) + Q(t) sin(2πfct), (2)

where I(t), Q(t) are real-valued narrowband information signals,
and fc is a relatively high carrier frequency. For example: ana-
log amplitude modulation (AM) obeys the representation (2) with
Q(t) = 0, whereas frequency modulation has both I(t), Q(t)
nonzero [6]. Various digital techniques, such as frequency- or phase-
shift keying (FSK/PSK) also conform with (2). When fc is known
prior to sampling, analog demodulation of the carrier followed by
filtering is used to provide the DSP module with I(t), Q(t), or their
sampled versions according to their actual bandwidths. The software
then invokes various synchronization techniques to compensate for
slight carrier offsets in the analog demodulation.

f
0

2
NYQf− 2

NYQf

1/T B

zL[n]z0[n]z−1[n] z1[n]z−L[n]

fiai bi

Fig. 2: The Fourier transform of a multiband signal.

The MWC does not utilize carrier knowledge prior to sampling
and consequently the sequences zl[n] do not relate directly to the in-
formation signals I(t), Q(t) of a band of interest. For example: in
Fig. 2, the energy of the ith band split between the first and the sec-
ond spectrum slices, and in general zl[n] may contain simultaneous
contributions of several bands. One possible solution for this short-
coming is to reconstruct the Nyquist rate samples x(n/fNYQ) from
zl[n], l ∈ S and then manipulate the high rate sequence. However,
since fNYQ is prohibitively large this approach may be computation-
ally infeasible, which motivates the baseband processing definition.

Our goal is to use only lowrate computations (i.e., proportional to
NB rather than to fNYQ) and to obtain the band edges [ai, bi], the
carrier fi and a lowrate sequence si[n], per band.

In the next section, we propose an algorithm that provides the
MWC with the baseband processing functionality, with computation
complexity proportional to NB � fNYQ.

3. ALGORITHM

We propose a three-steps algorithm, which begins in refining the sup-
port estimate to the actual band edges [ai, bi]. We rely on two ad-
ditional model parameters: the minimal width of a single band bmin

and the smallest spacing between bands Δmin. These quantities are
often implied by the application specification. The second step pro-
cesses zl[n] and incorporates the edges [ai, bi] to provide a lowrate
sequence si[n] per band 1 ≤ i ≤ N/2. Finally, an accurate carrier
detection technique finds fi assuming si[n] corresponds to a signal
of the form (2). In the sequel, we mention the relevant MATLAB
commands (in verbatim style) that are used in our implementation.

Step 1. For convenience, we start with converting the complex-
valued zl[n] to real-valued counterparts. Recall that the input x(t)
is real-valued with conjugate symmetric X(f). Therefore, l ∈ S
implies −l ∈ S and z−l[n] = z∗l [n]. In step (1.1) of Fig. 3, a real-
valued sequence xl[n] at rate 2B for each l ∈ S, l > 0 is obtained
by re-positioning zl[n], z−l[n] from both sides of the origin. Mathe-
matically, xl[n] = I2,0.5B{z±l[n]}, where the operator

Ir,F {z±l[n]}�=(zl[n] ↑ r)e−j2πFn + (z−l[n] ↑ r)ej2πFn, (3)

and ↑ r denotes rate conversion by a factor of r, with the appropriate
post-filtering. By abuse of notation, here and in the sequel the same
index n is used before and after the rate conversion, where the con-
text resolves the ambiguity. The case l = 0 ∈ S, has x0[n] = z0[n].
We used interpft to carry out the interpolations in (3). The infor-
mation rate is not changed; zl[n] is complex-valued at rate B, while
xl[n] is real-valued at rate 2B.

Power spectral density (PSD) estimation of xl[n] is invoked in
(1.2) in order to locate the energy concentration within each spec-
trum slice. We used the Welch PSD estimation method, implemented
by pwelch, which divides the input to overlapping sections with
overlap ratio 50%, filters each section by a Hamming window, per-
forms a discrete Fourier transform (DFT) on each section, and finally
averages the results. The frequency resolution and the window size
are determined by:

fres = min(bmin, Δmin), W ≥ 2B

fres

. (4)

3627

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on July 20,2010 at 14:11:12 UTC from IEEE Xplore.  Restrictions apply. 



zl[n]z−l[n]

0 B
2

0 B
2

0 B

xl[n]

(1.3) Edge detection

0 B 0 B

−B
< Δmin

< bmin

−B
2−B

2

(1.1) Complex to real (1.2) PSD+Threshold
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The PSD estimation produces P
(l)
xx [k] for 1 ≤ k ≤ K ≈ W/2,

where the accuracy of the estimation increases with the number of
samples in xl[n]. The window size introduces an inherent trade-off,
where a short one gives better averaging of additive noise, while a
longer one allows higher DFT orders and thus improves the number
of frequency bins K. In (4), the shortest possible window is used. A
logarithmic threshold

log10(Threshold) =
1

K

K∑
k=1

log10 P (l)
xx [k], (5)

translates P
(l)
xx [k] to a binary decision on the energy concentration.

Finally, in step (1.3) we mitigate undesired noise effects that
were encountered in simulations; Support regions that are closer than
Δmin are united, and isolated regions with width smaller than bmin

are pruned. The operations (1.1)-(1.3) are carried out for each l ∈
S, l ≥ 0. To conclude this step, only the N/2 most powerful bands,
according to the PSD value, are retained to further mitigate noise
effects. The output of Step 1 consists of N/2 pairs [ai, bi] roughly
indicating the start and the stop edges of the information bands. To
this end, the pairs are ordered such that ai < bi < ai+1, and by
convention a0 = b0 = 0, a(N/2)+1 = b(N/2)+1 = fNYQ/2.

Step 2. The purpose of this step is to isolate a sequence si[n] for
each 1 ≤ i ≤ N/2, such that si[n] contains the entire contribution of
exactly one band of information. Using the edges [ai, bi] we identify
cases in which the information resides in adjacent spectrum slices
xl[n], xl+1[n] for some 0 ≤ l ∈ S; see Fig. 2 for an illustration. In
such cases, merging occurs via

s̃i[n] = I4,0.5B{z±l[n]} + I4,B{z±(l+1)[n]}, (6)

whereas s̃i[n] = xl[n] when both ai, bi lie within the same spectrum
slice. By now, s̃i[n] contains the entire energy of the ith band with
possible contributions from other bands. The information [ai, bi]
from Step 1 is utilized again to decide on the next actions.

Consider the ith band, and for brevity assumes no merging step
was required, such that [ai, bi] ⊆ [lB − B/2, lB + B/2] for some
0 ≤ l ∈ S. Let [ωp,L, ωp,H ] be the normalized angular frequencies
of xl[n] corresponding to [ai, bi], and set ωs,L = 0, ωs,H = π/2.
If either bi−1, ai+1 resides within the same spectrum slices zl[n],

cos(ω0t)

LPF d
dt

LPF

vi(t)

vq(t)

s(t) +
vd(t)

d
dt

sin(ω0t)

Fig. 5: The analog balanced-quadricorrelator.

update the normalized angular frequencies ωs,L, ωs,H , respectively.
Next, design a filter with passband ωp,L ≤ ω ≤ ωp,H and stopping
bands [0, ωs,L] and [ωs,H , π/2]. As Fig .4 shows, the resulting filter
may be low-, high-, band- or all-pass, depending on the specific val-
ues of ωs,L, ωs,H . We used firpmord and firpm to determine
the filter order and for the actual realization. We allowed passband
ripple of 10−6 and stopband ripple of 10−2. The filter order is often
small, since the actual spacing between the bands relaxes the cutoff
constraints. At last, si[n] is obtained by filtering s̃i[n] with the de-
signed finite impulse response (FIR). Similar filter design holds with
merging occured, eq. (6).

At this point, we have a sequence si[n] for each band 1 ≤ i ≤
N/2 at a uniform rate of either 2B or 4B, depending on whether
the merging (6) was required. In either case, the middle frequency
f̃i = (ai + bi)/2 can serve as a rough estimate of the unknown

carrier of (2). In fact, in simulations we observed that f̃i is not far
from the true carrier, as long as the PSD is sufficiently accurate, a
situation which occurs for a high signal to noise ratio (SNR) and
many samples from xl[n]. The next step incorporates an accurate
carrier frequency detector which relies on (2) to better predict the
carriers even in cases that the PSD curve is noisy and inaccurate.

Step 3. We start with describing the balanced quadricorrelator
(BQ), that was analyzed in [4] and whose circuit appears in Fig. 5.
The BQ receives an input s(t) of the form (2), assumes a certain
carrier frequency f0 = ω0/2π, and outputs vd(t) whose expected
value is proportional to the carrier error

E[vd(t)] = −KG(fc − f0)(E[I2(t)] + E[Q2(t)]). (7)

In practice, time averaging replaces the expectation. The signals
I(t), Q(t) that build s(t) are assumed random with zero-cross cor-
relation, E[I(t1)Q(t2)] = 0 for all t1, t2. The constant KG in (7)
captures the analog gains along the way: the mixers, the filters, and
the differentiators. Note that zero-cross correlation holds for AM,
and also for FSK/PSK with a preceding source coding stage [4].

In the proposed algorithm, we implement a digital version of the
BQ. A fundamental requirement for the BQ operation, either in ana-
log or digital, is that the first mixing yields non-overlapping copies of
s(t). To ensure this property, each si[n] is interpolated by a factor of
three, and the positive and negative frequencies are re-positioned in
[π/3, 2π/3], [−2π/3,−π/3], respectively. For example, when no
merging occurs this operation boils down to I6,1.5B{z±l[n]} with
the relevant l. The digital BQ is applied on the outcome.

Our digital implementation consists of FIR lowpass arm filters,
and the continuous derivatives are approximated by the finite differ-
ence – a filter with the discrete impulse response [1,−1]. The BQ
is initialized with a normalized angular frequency ω0 = π/2 and

is repeatedly applied. At each iteration, the time-averaged vd[n]
is multiplied by a loop gain G = 5 · 106, and ω0 accumulates

Gvd[n]/‖si[n]‖2, while monitoring ω0 ∈ [π/3, 2π/3]. The pro-
cedure terminates upon convergence or if a pre-defined number of
iteration is reached. Note that a wide family of filters can substitute
the true differentiators [4].
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Properties. Upon completion, the carrier fi is computed from
the normalized angular frequency ω0 that the BQ converged to by

fi = B

(
c
ω0 − π/2

π/3
+ l +

c − 1

2

)
, (8)

where c = 1 when merging was not required, and c = 2 otherwise.
In addition, we supply si[n] for the DSP module of Fig. 1. For each
band, the digital BQ operates at rate either 6B or 12B, depending
on the rate of si[n]. The recovered carrier fi and the detected band
edges [ai, bi] allow to reduce the rate of si[n] to the minimal rate
2(bi−ai). The DSP can extract the information I[n] by no more than
multiplying by cos[2πfin] and lowpass filtering; Q[n] is obtained
similarly with sin[2πfin].

For applications in which bmin, Δmax are unknown, Steps (1.1)-
(1.2) may yield many possible support regions. However, since only
the N/2 powerful regions are selected, and since the BQ iterates on
the carriers fi, the missing bmin, Δmax has little effect in practice.

A final comment regarding the conversation to analog in Fig. 1.
In [1], x(t) is reconstructed directly from zl[n] by interpolation to
zl(t) and properly positioning of the spectrum slices. Since the sce-
nario of band splitting is common, it can be verified that this proce-
dure requires 2N mixers and filters at the most. A nice feature of
the present approach is that only N mixers and filters are required.
Furthermore, the reconstruction reduces to standard modulation of
the narrowband information signals I[n], Q[n].

4. SIMULATIONS

To evaluate the proposed algorithm, we considered an exam-
ple of a multiband model N = 3, B = 50 MHz. Quadra-
ture phase-shift keying (QPSK) modulation was used to generate
x(t) =

∑3
i=1 xi(t) via

xi(t) =

√
2Ei

Tsym

(∑
n

Ii[n]p(t − nTsym)

)
cos(2πfit) (9)

+

(∑
n

Qi[n]p(t − nTsym)

)
sin(2πfit) + n(t),

where Ei = {1, 2, 3}, 1/Tsym = 30 MHz, p(t) = rcos(t/Tsym)
are the symbol energy, rate and raised-cosine pulse shape with 30%
rolloff. The carriers fi ∈ [0, 5] GHz, the bit streams Ii[n] =
±1, Qi[n] = ±1, and the additive white Gaussian noise n(t) were
all drawn independently at random.

An MWC with the basic configuration was used with m = 30
channels and sign alternating waveforms pi(t), M = 195 alterna-
tions points per period T . To verify the performance of the pro-
posed algorithm, we assume the spectrum slices zl[n] were obtained
successfully by the preceding stages, namely the CTF and matrix
inversion steps of Fig. 1. For each one of 40 test signals, we mea-
sure the carrier frequency offset (CFO) of each fi. Fig. 6 reports the
distribution of the CFOs encountered in our simulations. Evidently,
in most cases our algorithm approaches the true carriers as close as
150 kHz. For comparison, the 40ppm CFO specifications of IEEE
802.11 standards tolerates this error for transmissions located around
3.75 GHz. The offset is to be further reduced in the DSP, based on
QPSK-specific synchronization techniques.

5. RELATED WORK

Two leading alternative sub-Nyquist approaches appear in the liter-
ature. We considered periodic nonuniform sampling in [2], where

−1000 −500 0 500 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

CFO (kHz)

P
er

ce
nt

ag
e 

of
 s

im
ul

tio
ns

 p
er

 b
in

99 % in
150 kHz

(a)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

SNR [dB]

P
er

ce
nt

ag
e 

of
 s

im
ul

at
io

ns

 

 

200 kHz

100 kHz

70 kHz

30 kHz

|CFO| within

(b)

Fig. 6: The distribution of CFO vs. SNR (a). In (b), SNR=10 dB
and the curves represent the percentage of simulations in which
the CFO magnitude is within the specified range.

the CTF and the matrix inversion were introduced. This approach
however requires Nyquist-rate ADCs, and in addition necessitates
interpolating the lowrate nonuniform sequences to the high Nyquist
grid before the CTF or any other processing can occur [1].

The random demodulator (RD) of [3] is a special case of the
MWC with m = 1, a pseudo-random (aperiodic) sign alternating
p1(t), and h(t) which is restricted to an ideal integration. The RD
is suited to signals consisting of a finite set of pure sinusoids, rather
than analog multiband signals, such as QPSK transmissions. In the
examples considered earlier, N = 6, B = 50 MHz, fNYQ = 10
GHz, the recovery problem boils down to a sparse inversion prob-
lem with a matrix dimension ≈ 109 × 1010 [1]. For comparison, in
the same setting, the CTF of the MWC involves a sparse inversion
of a matrix size of 35 × 195. More inherently, the reconstruction
from the RD samples aims at recovering the Nyquist rate signal di-
rectly, with no intermediate lowrate sequences such as zl[n] of the
MWC. Consequently, the prominent advantage of sub-Nyquist base-
band processing is not accomplished at present by neither the RD
nor nonuniform sampling.
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